Aromatic Substitution of Olefins. XIV. Reaction of σ-Bonded Olefin-Palladium(II) Complexes with Benzene: Evidence for the Mechanism of the Aromatic Substitution of Olefins

Sadao Danno

Polymer Research Laboratory, Ube Industries Ltd., Ichihara, Goi, Chiba

and Ichiro Moritani, Yuzo Fujiwara and Shiichiro Teranishi

Faculty of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka

(Received August 18, 1970)

The substitution reaction of olefins is as follows:1)

$$\begin{array}{c|c} H & X \\ + \operatorname{Pd}(\operatorname{OAc})_2 + & & \xrightarrow{\operatorname{AcOH}} \end{array}$$

$$C = C + \operatorname{Pd}^{\emptyset} \qquad (1)$$

We have demonstrated that this is the general reaction occurring between common olefins and aromatics to produce aromatic-substituted olefins and that the reaction proceeds through a different mechanism from that of the Wacker process.²⁾

The mechanism proposed involves σ -bonded olefin-palladium(II) intermediate.³⁾ In order to prove this mechanism, we have performed the reaction of a σ -bonded 2,2-dichlorovinyl-palladium(II) complex (I) with benzene. If the proposed mechanism is reasonable, the σ -bonded complex bearing a C=C double bond would react with benzene to produce an aryl-substituted olefin. The starting complex (I) was prepared by Fitton,⁴⁾ and the reaction was carried out using complex(I), benzene, acetic acid, and silver acetate under re-

flux for 8 hr. The silver acetate was introduced to abstract a chloride ligand from (I) to enable benzene to coordinate to palladium(II) metal.*1 From the reaction mixture, β , β -dichlorostyrene was obtained in a 7.4% yield based on complex(I) (equation 2).*2*3

$$\begin{array}{c|c} Cl & H \\ \hline C=C & PPh_3 \\ Pd & + & & & \\ \hline \begin{array}{c} AcOH, AgOAc \\ \hline reflux, 8 \ hr \end{array} \end{array} \rightarrow \\ \hline \begin{array}{c} Ph_3P & Cl \\ \hline (I) & & \\ \hline \end{array} \quad \begin{array}{c} C=C & \end{array} \quad \begin{array}{c} Cl & \\ \hline \end{array} \quad \begin{array}{c} Cl & \\ \hline \end{array} \quad \begin{array}{c} Cl & \\ \hline \end{array} \quad \begin{array}{c} C=C & \end{array} \quad \begin{array}{c} Cl & \\ \hline \end{array} \quad \begin{array}{c} C=C & \end{array} \quad \begin{array}{c} Cl & \\ \hline \end{array} \quad \begin{array}{c} C=C & \end{array} \quad \begin{array}{c} Cl & \\ \hline \end{array} \quad \begin{array}{c} C=C & \end{array} \quad \begin{array}{c} Cl & \\ \hline \end{array} \quad \begin{array}{c} C=C & \end{array} \quad \begin{array}{c} Cl & \\ \hline \end{array} \quad \begin{array}{c} C=C & \end{array} \quad \begin{array}{c} Cl & \\ \hline \end{array} \quad \begin{array}{c} C=C & \end{array} \quad \begin{array}{c} Cl & \\ \hline \end{array} \quad \begin{array}{c} C=C & \end{array} \quad \begin{array}{c} Cl & \\ \hline \end{array} \quad \begin{array}{c} Cl & \\ \hline \end{array} \quad \begin{array}{c} Cl & \\ \hline \end{array} \quad \begin{array}{c} C=C & \end{array} \quad \begin{array}{c} Cl & \\ \hline \end{array} \quad \begin{array}{c} C=C & \end{array} \quad \begin{array}{c} Cl & \\ \hline \end{array} \quad \begin{array}{c} Cl & \\ \hline \end{array} \quad \begin{array}{c} C=C & \end{array} \quad \begin{array}{c} Cl & \\ \hline \end{array} \quad \begin{array}{c} C=C & \end{array} \quad \begin{array}{c} Cl & \\ \hline \end{array} \quad \begin{array}{c} Cl & \\ \hline \end{array} \quad \begin{array}{c} C=C & \end{array} \quad \begin{array}{c} Cl & \\ \hline \end{array} \quad \begin{array}{c} Cl & \\ \hline \end{array} \quad \begin{array}{c} C=C & \end{array} \quad \begin{array}{c} Cl & \\ \hline \end{array} \quad \begin{array}{c} Cl & \\ \end{array} \quad$$

Moreover, σ -bonded *cis*- and *trans*-2-chlorovinyl-palladium(II) complexes reacted with benzene to produce corresponding β -chlorostyrenes.

These results clearly show that the aromatic substitution of olefins proceeds via formation of a σ -bond between olefin and palladium(II) metal, and support the proposed mechanism.³⁾

¹⁾ Y. Fujiwara, I. Moritani, S. Danno and S. Teranishi, *J. Amer. Chem. Soc.*, **91**, 7166 (1969).

²⁾ S. Danno, I. Moritani and Y. Fujiwara, Chem. Commun., 1970, 610; S. Danno, I. Moritani, Y. Fujiwara and S. Teranishi, J. Chem. Soc., B, in press.

³⁾ S. Danno, I. Moritani and Y. Fujiwara, *Tetrahedron*, **25**, 4819 (1969).

⁴⁾ P. Fitton and J. E. McKeon, Chem. Commun., 1968, 4.

^{*1} As silver acetate alone cannot bring about the reaction, it is apparent that the reaction takes place by the action of palladium(II) of complex (I).

^{*2} That the σ -complex(I) is stable under the reaction condition without benzene was confirmed by a separate experiment.

^{**} Note added in Proof. When the reaction time was 1.5 hr to present the polymerization of the styrene formed, the yield increased up to 80%.